Podręcznik
3. Linearyzacja równań modelu obiektu
3.2. Przykład 1 linearyzacji równań modelu obiektu
Przypomnijmy równania stanu dla układu trzech zbiorników
Linearyzacja polega na rozwinięciu nieliniowych funkcji prawych stron równań stanu w szereg Taylora w punkcie równowagi z pominięciem wyrazów rzędu wyższego niż liniowy. Funkcja prawych stron z pierwszego równania stanu ma postać
Dla skrócenia zapisu pomijamy w zapisie argument czasu
. Pamiętamy jednak, że zmienne stanu i sterowania są funkcjami czasu.
Rozwinięcie funkcji
w szereg Taylora wokół punktu równowagi
ma postać
gdzie np.:
oznacza wartość pochodnej cząstkowej funkcji
względem
obliczoną w punkcie równowagi
.
Obliczmy wartości pochodnych cząstkowych funkcji
względem zmiennych stanu i sterowań w punkcie równowagi. Dla przypomnienia pochodna funkcji pierwiastek kwadratowy wynosi
Korzystając w razie potrzeby ze standardowych własności pochodnej dostajemy
Rozwinięcie funkcji
w szereg Taylora wynosi zatem
Funkcja prawych stron z drugiego równania stanu ma postać
Rozwinięcie funkcji
w szereg Taylora wokół punktu równowagi
ma postać
Obliczmy wartości pochodnych cząstkowych funkcji
względem zmiennych stanu i sterowań w punkcie równowagi
Rozwinięcie funkcji
w szereg Taylora wynosi zatem
Funkcja prawych stron z trzeciego równania stanu ma postać
Rozwinięcie funkcji
w szereg Taylora wokół punktu równowagi
ma postać
Obliczmy wartości pochodnych cząstkowych funkcji
względem zmiennych stanu i sterowań w punkcie równowagi
Rozwinięcie funkcji
w szereg Taylora wynosi zatem
Obliczyliśmy rozwinięcia w szereg Taylora wszystkich funkcji prawych stron. Przepiszmy zatem jeszcze raz równania stanu, ale zamiast funkcji użyjmy przybliżeń wynikających z szeregu Taylora
Zauważmy, że na podstawie warunków na punkt równowagi następujące wyrażenia zerują się
Wynika z tego, że możemy pominąć wyrazy stałe w rozwinięciu w szereg Taylora
Wprowadźmy następujące oznaczenia
Zmienne
,
,
oraz
określają przyrosty wartości
,
,
oraz
w stosunku do ich wartości w punkcie pracy
,
,
oraz
.
Możemy teraz zapisać przybliżenia w równaniach stanu
Obliczmy ile wynoszą pochodne zmiennych
,
oraz
.
ponieważ
,
oraz
jako pochodne funkcji stałych. Wprowadźmy zatem do przybliżeń wielkości
,
oraz
zamiast
,
oraz
.
Zauważmy, że współczynniki stojące przy
,
,
, oraz
pomimo swojej skomplikowanej postaci są stałymi, ponieważ są obliczane w punkcie równowagi.
Powyższe zależności są spełnione w przybliżeniu. Aby utworzyć równania zlinearyzowane wprowadzamy nowe wielkości
,
,
oraz
oraz definiujemy równania zlinearyzowane w następujący sposób
Są to równania w ścisłym sensie, gdyż zamiast znaku przybliżenia
pojawia się znak równości. Przydatność linearyzacji opiera się na następującym postulacie.
Postulujemy, że jeżeli zachodzą następujące warunki
- warunki początkowe dla zmiennych
,
, \( \tilde{H}_3 \( są dokładnie równe przyrostom zmiennych
,
oraz
w chwili początkowej
- w pewnym ustalonym przedziale czasu
rozwiązania nieliniowych równań stanu
,
oraz
pozostają w otoczeniu punktu równowagi
(
-- stałe dodatnie)
to rozwiązania
,
oraz
liniowych równań stanu (1.218)-(1.220) dobrze przybliżają przyrosty zmiennych stanu dla
tzn. w tym przedziale czasu zachodzi przybliżony warunek
Przybliżenie to jest tym lepsze im bliżej wybranego punktu równowagi pozostają rozwiązania nieliniowych równań stanu tzn. im mniejsze są stałe
w równaniach (1.225})-(1.226).
Ścisły dowód tego postulatu wymaga zaawansowanego aparatu matematycznego, dlatego nie będzie zaprezentowany w tym opracowaniu. Intuicyjnie postulat ten jest jednak zrozumiały. Oczekujemy, że rozwiązania zlinearyzowanych równań stanu będą dobrze przybliżały przyrosty zmiennych stanu obiektu nieliniowego w stosunku do ich wartości w wybranym punkcie równowagi, przynajmniej w pewnym otoczeniu tego punktu. Bardzo istotna jest obserwacja, że rozwiązania zlinearyzowanych równań stanu przybliżają przyrosty zmiennych stanu obiektu nieliniowego, a nie same zmienne stanu.
Funkcja wyjść dla układu trzech zbiorników ma postać
Linearyzacja funkcji wyjść ma postać
Wartości pochodnych cząstkowych funkcji
względem zmiennych stanu i sterowań w punkcie równowagi wynoszą
Rozwinięcie funkcji wyjść w szereg Taylora wynosi zatem
Jeżeli przeniesiemy
na drugą stronę przybliżenia dostajemy
Jeżeli teraz wprowadzimy do przybliżenia zmienne przyrostowe, to otrzymujemy
gdzie
Aby zdefiniować zlinearyzowane równanie wyjść wprowadzamy zmienną
. Zlinearyzowane równanie wyjść ma postać
Postulując takie same warunki jak w przypadku równań stanu oczekujemy, że rozwiązanie równania wyjść
będzie dobrze przybliżać przyrost zmiennej wyjściowej 
Zlinearyzowane równania stanu i wyjść mogą zostać przedstawione w postaci wektorowej







































