Podręcznik
Strona: | SEZAM - System Edukacyjnych Zasobów Akademickich i Multimedialnych |
Kurs: | Wprowadzenie do techniki pomiarowej |
Książka: | Podręcznik |
Wydrukowane przez użytkownika: | Gość |
Data: | wtorek, 7 stycznia 2025, 03:37 |
1. Obiekt
Podobnie jak w wielu innych dziedzinach wiedzy tak i w technice pomiarowej stosuje się uniwersalne określenie – obiekt. Dążeniem człowieka jest poznanie właściwości i cech obiektów, przy czym (na tym etapie rozważań) nie ma znaczenia co ten obiekt reprezentuje. Człowiek ma do dyspozycji jako narzędzie poznawcze pewien zestaw zmysłów (rys. 1). Możliwości identyfikacji cech obiektów za pomocą zmysłów są jednak bardzo ograniczone. Standardowe przykłady to zakres częstotliwości pasma słyszalnego (20Hz do 20kHz), rozdzielczość wzroku (na poziomie 0.1mm) czy też trudne do zdefiniowania właściwości węchu lub smaku.
Rys. 1. Narzędzia poznawcze człowieka
Proces poznawania obiektu można zilustrować w postaci toru przepływu informacji pomiarowej. W pierwszym etapie określamy cechy obiektu (to jest model fizyczny), następnie opisujemy te cechy w postaci równań matematycznych (czyli tworzymy model matematyczny obiektu). W równaniach występują wielkości fizyczne, z których wybieramy wielkości mierzalne i realizujemy pomiar, co sprowadza się do nadania wielkościom fizycznym konkretnych wartości liczbowych.
Rys. 2. Tor przepływu informacji
1.1. Wzorzec
Pojawia się jednak pytanie jak wyrazić w postaci liczbowej wartość wielkości ? Można to zrobić tylko przez porównanie ze wzorcem odtwarzającym jednostkę miary danej wielkości fizycznej. To jest bardzo ważna cecha wszystkich pomiarów. W każdym urządzeniu czy systemie pomiarowym musi występować wzorzec. Źródło napięcia referencyjnego w przetworniku analogowo-cyfrowym czy też generator wzorcowy w liczniku uniwersalnym to właśnie wzorzec. W mierniku o odczycie analogowym wzorcem jest po prostu podziałka na skali pomiarowej – przyrząd został wcześniej wyskalowany i do każdej działki została przypisana konkretna wartość liczbowa. Praktycznie to na ile wzorzec funkcjonuje prawidłowo decyduje o wartości i sensie pomiaru.
Zagadnie odtwarzania jednostek miary poprzez wzorce jest bardzo szeroko analizowane i badane. Istnieje ogólna tendencja do zastępowania wzorców materialnych przez zjawiska kwantowe. I tak np. jako wzorzec napięcia stałego jest wykorzystywane obecnie złącze Josephsona zamiast nasyconego ogniwa Westona, wzorcem częstotliwości są drgania emitowane przez atom cezu (1Hz = 1/ 9 192 631 770 okresów drań). Oczywiście w tej postaci występują wzorce pierwotne (państwowe), w codziennej praktyce mamy do czynienia z wzorcami użytkowymi (stabilizatory elektroniczne, generatory kwarcowe, oporniki wzorcowe).
Rys. 3. Wykorzystanie wzorca
Wyróżniamy wzorce:
- niezmienne w czasie
- porównywalne
- proste w stosowaniu
- proste do odtworzenia
- dokładne
1.2. Pomiar i system pomiarowy
Podchodząc do zagadnienia pomiaru w sposób naukowy definiuje się pomiar jako eksperyment lub proces poznawczy mający na celu zidentyfikowanie i wyrażenie w postaci liczbowej parametrów modelu matematycznego obiektu badanego.
Pomiar wykonywany jest w ramach systemu obejmującego zarówno obiekt badany, wszelkie środki techniczne (instrumentarium) jak i odbiorcę informacji (rys. 4). To jest dosyć istotna uwaga, sformułowana w celu podkreślenia, że wyniki pomiarów zawsze obarczone są pewną niepewnością wynikającą z właściwości używanej aparatury jak i warunków wykonywania badań.
Rys. 4. System pomiarowy
1.3. Niepewność pomiaru
Jak zaznaczono wcześniej przypisanie wartości liczbowej do wielkości mierzonej wymaga porównania tej wielkości z wzorcem odtwarzającym jednostkę miary. Oczywiście takie porównanie zachodzi z pewną skończoną dokładnością uwarunkowaną chociażby przez metodę porównania. Generalnie, wykonując jakiekolwiek pomiary, bardzo ważna jest umiejętność lokalizacji źródeł błędów i ich eliminacji oraz oszacowania niepewności pomiaru. Aktualnie obowiązującą formą określania dokładności pomiaru jest właśnie niepewność, którą można utożsamiać z określeniem błąd pomiaru.
Każdy wynik pomiaru powinien być podawany razem z oszacowaniem niepewności, a ściślej przedziału niepewności. Niestety szacowanie niepewności jest procesem bardzo złożonym i czasochłonnym, a stosowany aparat matematyczny wykorzystuje pojęcia z zakresu statystyki matematycznej. Wprowadza się pojęcia niepewności typu A i typu B. Niepewność typu A jest związana z występowaniem błędów przypadkowych. Szacowanie niepewności typu A wymaga wykonania serii pomiarów i wyznaczenia wariancji oraz odchylenia standardowego przy założeniu, że najlepszym przybliżeniem prawdziwego wyniku jest estymator wartości oczekiwanej. Nieco prostsze jest wyznaczanie niepewności typu B związanej z niedoskonałością aparatury pomiarowej i metody pomiaru. Oprócz wspomnianych błędów przypadkowych, na które użytkownik nie ma wpływu, ale może je oszacować metodami statystycznymi, występują błędy systematyczne. Teoretycznie takie błędy można wyeliminować i uwzględnić w wyniku pomiaru przez wprowadzenie poprawki.
W praktyce dokonując pomiaru za pomocą dowolnego przyrządu powinno się przynajmniej skorzystać ze specyfikacji przyrządu i uzupełnić wynik pomiaru o wartość tak określonej niepewności. Będzie to tzw. błąd bezwzględny stanowiący różnicę pomiędzy wartością zmierzoną, a rzeczywistą. Użytkownik nie zna oczywiście wartości rzeczywistej i to producent sprzętu zapewnia, że dokonując pomiaru popełni się błąd nie większy niż wynikający ze specyfikacji. Wynik pomiaru można też uzupełnić o podanie błędu względnego stanowiącego iloraz błędu bezwzględnego i wartości zmierzonej.
Na jakość pomiaru wpływ mają zarówno metody jak i przyrządy pomiarowe (rys. 5).
Rys. 5. Metosy i narzędzia pomiarowe
1.4. Przyrządy pomiarowe
Analizując rozwój przyrządów pomiarowych można wskazać cztery fazy dominacji określonych przyrządów: przyrządy analogowe, przyrządy cyfrowe, przyrządy systemowe i przyrządy wirtualne. O ile dawniej rozróżniało się przyrządy analogowe i cyfrowe na podstawie sposobu ekspozycji wyniku, o tyle obecnie przy niemal całkowitym zaniku przyrządów analogowych i wyposażeniu przyrządów cyfrowych w możliwość współpracy w systemie pomiarowym, należy raczej mówić o przyrządach autonomicznych i wirtualnych. Dyskusyjna jest teza o stopniowym zastępowaniu przyrządów autonomicznych przez wirtualne. Nastąpi raczej scalenie technologii typowo informatycznej i pomiarowej. Nowoczesny przyrząd pomiarowy może być wyposażony w twardy dysk, interfejsy typu LAN, USB i obsługiwany za pomocą myszki.
Rys. 6. Klasyfikacja przyrządów pomiarowych
Podział przyrządów pomiarowych:
Czasami można spotkać się z podziałem przyrządów ze względu na przeznaczenie, aczkolwiek taki podział staje się umowny z uwagi na to, że coraz częściej korzystamy z urządzeń wielofunkcyjnych, łączących możliwość obserwacji sygnałów i pomiaru różnych wielkości.
1.5. Metrologia, miernictwo, technika pomiarowa
Wszelkie rozważania na temat szeroko rozumianych pomiarów powinny być usytuowane w określonym obszarze wiedzy. Dwa podstawowe określenia dotyczące pomiarów to metrologia i miernictwo. Pojęcia te nie są jednak tożsame. Przez wiele lat funkcjonowało głównie pojęcie miernictwa, ale współcześnie utożsamia się je z techniką pomiarową będącą domeną działań inżynierskich. Metrologia jest dziedziną naukową zajmującą się teorią pomiarów w różnych dyscyplinach nie mających wiele wspólnego z techniką, jak chociażby ekonomia czy socjologia.
Analogicznie jak i w innych dyscyplinach inżynierskich, tak i w technice pomiarowej, rozwój cyfrowych technik przetwarzania informacji spowodował zmiany zarówno w konstrukcji przyrządów jak i w podejściu do zagadnień pomiarowych. Uniwersalność i standaryzacja rozwiązań układowych oraz powszechna konieczność wykonywania pomiarów przyczyniły się do ukształtowania poglądu o usługowym charakterze techniki pomiarowej. Tak jest w istocie czego przykładem może być względna prostota konstrukcji przyrządów wirtualnych przy wykorzystaniu uniwersalnych kart zbierania danych i zintegrowanych środowisk programistycznych.
Rys. 7. Tor pomiarowy z przetwarzaniem cyfrowym
Na rys. 7 pokazano elementarną i praktycznie standardową strukturę toru pomiarowego. Poszczególne bloki reprezentują podstawowe operacje z jakimi mamy do czynienia we współczesnych układach, systemach i przyrządach pomiarowych. W każdym przyrządzie można wyróżnić blok przetwarzania analogowego, analogowo-cyfrowego, obróbki cyfrowej i interfejsu wyjściowego. Blok przetworników pierwotnych stanowi zazwyczaj dodatkowe wyposażenie przyrządu (np. sondy pomiarowe). Przetwarzanie analogowe (kondycjonowanie sygnału) może dotyczyć takich operacji jak filtracja, separacja galwaniczna, tłumienie lub wzmacnianie sygnału, ale najważniejszym zadaniem tego bloku jest dopasowanie parametrów sygnału (w praktyce napięciowego) do wejścia przetworników a/c. Po przetworzeniu do postaci cyfrowej sygnał może być poddany różnym algorytmom pomiarowych realizowanym przez mikroprocesor będący standardowym elementem praktycznie każdego przyrządu pomiarowego. Interfejs we/wy należy tutaj rozumieć jako wszelkie środki interakcji przyrządu zarówno z użytkownikiem (np. pola odczytowe, ekrany, pokrętła, przyciski), jak i innym elementem sprzętowym (np. magistrale komunikacyjne). Strzałki na rysunku zaznaczono jako obustronne dla podkreślenia faktu, że użytkownik może prowadzić badania obiektu wymuszając jego określony stan. Klasyczny przykład to pomiary i badania charakterystyk elementów biernych i czynnych.
Należy zwrócić uwagę na znaczenie przetwarzania cyfrowego we współczesnej technice pomiarowej. Takie przetwarzanie ma określone zalety: uniwersalność, stabilność, powtarzalność i realizowalność. Następuje tu zatem swoiste sprzężenie zwrotne: tanie, łatwo dostępne mikroprocesory pozwalają na zaprojektowanie i zrealizowanie efektywnych algorytmów pomiarowych.
Należy jednak pamiętać, że przetworzenie sygnałów (czy też ogólnie wielkości fizycznych) do zapisu w postaci cyfrowej jest zawsze związane z pewną utratą informacji.
2. Podstawowe wielkości elektryczne
W rozdziale tym przedstawiono definicje i podstawowe informcje o wielkosciach elektrycznych podlegajacych pomiarom.
2.1. Sygnał przemienny
Najczęstszym sygnałem elektrycznym podlegającym pomiarom jest sygnał sinusoidalny. Poniższe rysunki prezentują podstawowe parametry sygnału.
Najważniejszym parametrem sygnału przemiennego jest jednak jego wartość skuteczna. Opisowo można wyjaśnić, że wartość skuteczna sygnału przemiennego jest równa wartości sygnału stałego, który powoduje takie same skutki energetyczne jak sygnał przemienny. Zatem wartość skuteczna jest „miarą mocy” sygnału, stąd jej podstawowe znaczenie. Wszystkie przyrządy pomiarowe przy włączonej funkcji pomiaru parametrów sygnału zmiennego pokazują właśnie wartość skuteczną. Problem interpretacji wskazań przyrządów pomiarowych jest bardzo istotny, chodzi przecież o odpowiedź na pytanie – co mierzy przyrząd ?. Kontrowersje wzbudza tak prozaiczny problem jak wartość skuteczna sygnału ze składową stałą. Zależność (2) opisuje tą wartość jako złożenie dwóch wartości: składowej stałej i wartości skutecznej składowej przemiennej. Z kolej zależność (3) wyraża stosunek amplitudy do wartości skutecznej i jest ważnym parametrem określającym „strzelistość” (ostrość sygnału). Z reguły przetworniki mają ograniczoną możliwość przetwarzania sygnałów w postaci wąskich impulsów, których współczynnik szczytu jest duży (np. większy od 10).
Dla sygnału harmonicznego o kształcie sinusoidalnym podstawowym parametrem czasowym jest okres i jego odwrotność, czyli częstotliwość. W przypadku przebiegów o charakterze impulsowym istotne znaczenie mają parametry takie jak: czasy trwania dodatniej lub ujemnej części impulsu czy czasy narastania i opadania zboczy. Oczywiście wielkości takie mogą być badane również dla sygnałów sinusoidalnych, ale ich znaczenie jest większe dla sygnałów impulsowych. W szczególności ważnym parametrem może być stosunek czasu trwania wysokiego poziomu sygnału do okresu nazywany współczynnikiem wypełnienia. Pomiary parametrów czasowych sygnałów mają o tyle znaczenie, że mogą być wykonywane z dużą dokładnością, znacznie większą niż parametry amplitudowe.
2.2. Prawo Ohma dla prądu zmiennego
Impedancja jest podstawową wielkością charakteryzującą właściwości obwodów i elementów elektronicznych i elektrycznych. Prawo Ohma, stanowiące podstawowa zależność w elektrotechnice, opisuje związek pomiędzy napięciem, prądem i rezystancją przy prądzie stałym (R = U / I). Analogiczna zależność obowiązuje przy prądzie zmiennym, z tym, że wielkości występujące we wzorze są liczbami zespolonymi. Wielkością odwrotną do impedancji jest admitancja (Y = I / U). Interpretacje geometryczną na płaszczyźnie zespolonej obu wielkości przedstawiono na rysunku. Impedancja i admitancja jako wielkości zespolone mogą być opisane we współrzędnych biegunowych przez amplitudę i fazę oraz we współrzędnych prostokątnych przez sumę składowych rzeczywistych i urojonych.
2.3. Impedancja i admitancja
Podstawowe zależności i określenia zwiazane z pojęciem impedancji:
Podstawowe zależności i określenia zwiazane z pojęciem admitancji:
2.4. Schematy zastępcze elementów biernych
W rzeczywistych rozwiązaniach nie istnieją elementy, które stanowią "czystą" rezystancję, pojemność lub indukcyjność. Rzeczywiste elementy reprezentowane są przez schematy zastepcze - równoległe bdź szeregowe. Schematy zastępcze powinny być równoważne.
W praktyce wykorzystując przyrząd pomiarowy (np. automatyczny mostek RLC) dobieramy schemat zastępczy w zależności od badanego elementu; tym samych określamy co będzie mierzone. Jednak dobry przyrząd pomiarowy powinien wykonać prawidłowo pomiary niezależnie od tego czy użytkownik prawidłowo dobrał schemat elementu. Obserwując wyniki pomiarów można łatwo zorientować się czy schemat jest właściwy (np. otrzymujemy ujemne wartości parametrów). Uzyskane wyniki powinny dać się przeliczyć na inny schemat zastępczy, zgodnie z zależnościami przedstawionymi na rysunkach.
Podstawowe schematy zastepcze cewki indukcyjnej. Standardowo cewkę rozpatruje się przy założeniu szeregowego schematu zastepczego definiująć rezystancję szeregową RS, indukcyjność szeregową LS i dobroć Q.
Podstawowe schematy zastepcze kondensatora. Standardowo kondensator rozpatruje się przy założeniu równoległego schematu zastepczego definiująć rezystancję równoległą RP, pojemność równoległą CS i stratność D.
3. Klasyczne metody pomiarowe
W rozdziale przedstawiono klasyczne, analogowe techniki pomiarowe.
3.1. Mostki Wheatstone’a
Klasyczne mostki Wheatstone’a umożliwiają pomiary rezystancji od ok. 1W do ok. 1MW i mogą występować w wykonaniu technicznym lub laboratoryjnym.
Laboratoryjne motki Wheatstone’a są układami o czterech ramionach
Rx , R2 , R3 ,R4 i o dwóch przekątnych: zasilania i wskaźnika zera.
Mostki laboratoryjne umożliwiają wyznaczenie wartości rezystancji jednego z ramion, gdy wartości pozostałych trzech ramion mostka są znane. W stanie równowagi mostka obowiązuje równanie (1).
Stan równowagi uzyskuje się nastawiając odpowiednią wartość opornika wielodekadowego R2 przy wybranej wartości oporników stosunkowych R3 i R4. Wartości stosunku R4/R3 dobiera się tak, aby, do zrównoważenia mostka, wykorzystać możliwie wszystkie dekady zestawu R2 [10 x (10000;1000;100;10;1;0.1)W]. Jako wskaźnik zera – wskaźnik równowagi stosuje się galwanometr magnetoelektryczny o dużej czułości lub czuły wskaźnik elektroniczny.
Do zasilania mostka stosuje się źródła o napięciu od 2V do kilkudziesięciu woltów. Większe napięcia stosuje się przy pomiarze większych wartości Rx (100kW do kilku MW).
Pomiary rezystancji mostkiem Wheatstone’a są obarczone błędami wynikającymi z niedokładności oporników R2 , R3 ,R4 oraz niewystarczającej czułości mostka.
Poprawę czułości mostka można osiągnąć poprzez zastosowanie wskaźnika zera o większej czułości, zwiększenie napięcia zasilającego do wartości dopuszczalnej i przez właściwy dobór rezystancji w mostku.
3.2. Mostek Thomsona
W mostku Thomsona oporniki R3 i R’3 są zestawami jednakowych oporników, zwykle 4-dekadowych, mechanicznie sprzężonych (umieszczonych na wspólnych osiach przełączników) tak, że zawsze R3 = R'3 , również oporniki R4 = R’4 nastawia się na jednakowe wartości np. 10W, 100W, 1000W. W mostku zrównoważonym, tzn. gdy Ig=0 oraz gdy spełniona jest zależność (1) warunek równowagi przybiera postać (2).
Laboratoryjne mostki Thomsona umożliwiają pomiar rezystancji na poziomie µΩ.
3.3. Mostki 4-gałęziowe
W klasycznym 4-gałęźnym mostku prądu przemiennego spełnienie warunku równowagi wymaga regulacji dwóch składowych.
Impedancje ramion mogą być opisane we współrzędnych prostokątnych (zależność 2) lub we współrzędnych biegunowych (zależność 4). Zatem warunek równowagi też można opisać dwojako – w postaci zależności (3) lub zależności (5).
Na rysunkach poniżej pokazano klasyczne mostki Wiena i Maxwella oraz zależności umożliwiające wyznaczenie parametrów rzeczywistego kondensatora i cewki rzeczywistej.
W mostku Wiena rezystancja Rx reprezentuje straty w dielektryku, a tgδ kąt stratności D.
W rzeczywistym układzie mostka Maxwella elementem regulacyjnym jest rezystancja R3, a nie elementy wzorcowe (R2, L2). Z uwagi na to, że w mostku prądu zmiennego regulacji muszą podlegać dwie składowe (a nie stosuje się praktycznie regulowanych wzorców indukcyjności) do układu mostka wprowadza się jeszcze dodatkową rezystancję r włączaną w ramiona RX-LX lub R2-L2 i w ten sposób zmienia się stałą czasową (L/R). Zatem mostek jest w równowadze przy równości stałych czasowych LX/(RX+r) i L2/R2 lub LX/RX i L2/(R2+r).
Mostek Wiena (do pomiaru pojemności):
Mostek Maxwella (do pomiaru indukcyjności):
Zauważmy, że zarówno mostek Maxwella jak i Wiena wymaga dla prawidłowej pracy bardzo starannego doboru elementów. Nie do uniknięcia jest przy tym wpływ takich zjawisk jak zmiany wartości parametrów elementów wzorcowych pod wpływem temperatury czy procesów starzeniowych oraz pojemności pasożytniczych i resztkowych indukcyjności. Alternatywą dla tych klasycznych mostków były mostki transformatorowe (rysunek poniżej), w których warunek równowagi był spełniany poprzez regulacje nastaw przekładni zwojowych w transformatorze. Nadal jednak pozostawał problemem trudności zautomatyzowania procesu równoważenia. Warunkiem automatyzacji jest zastąpienie regulowanych elementów wzorcowych przez sterowane źródła napięciowe, przy czym zgodnie z wcześniejszymi rozważaniami, niezbędna jest możliwość regulacji dwu składowych przesuniętych w fazie o π/2 (rysunek).