Uruchom program "Microwind2". Zobaczysz okno jak niżej. Na ilustracji kolorem żółtym opisano najważniejsze widoczne obiekty.

Shicror	Microwind 2 - example																					
File View	Edit	Simulat	e Co	ompile	An	alysis	Help															
🖻 📙		7 0	₿	€	⊖ 、	all]		2.19	-	30	₽	A	Ŧ	6			₽×				
5 lambda . ⊢−−−−i									Ä									∱			💊 Palette	X
2.000µm															Przes	suwa	anie o	brazi	u ŵ ol	knie	• • •	
T i									·												॑Щ 🛢 ÷ ↔	nn.
Jednostk	a siat	ki grafio	znej					Pase	ek na	rzęd	zi.										± ± # л/ л. ^	<u>, a</u>
																	Palet i obie	a wa któw	rstw		Options 🖂	¢
																	·					
																					Metal 2	¢
																					Metal 1	
																					Contact 🛛 🕅	¢
																					Polysilicon	¢
																					P+ Diffusion	¢
																					N+ Diffusion	<u> </u>
																					N Well	¢
Komu	nikatv	progra	mu										reg	miki juł pi	rojekt	on owa	nia				Technologia	
	ļ	, ogi u													Ļ							
Welcome to	/elcome to Microwind 2.6k - Sept 30, 2003 No Error CMOS 0.8um - 2 Metal (5.00V)																					

Będziemy wykorzystywać prostą technologię CMOS z minimalną długością bramki 0,8 mikrometra. W prawym dolnym rogu widnieje nazwa wczytanej przez program technologii. Przed rozpoczęciem projektowania zawsze sprawdź, czy jest to technologia CMOS 0.8 μm. Jeśli nie, trzeba najpierw wczytać odpowiedni plik technologiczny.

File	View	Edit	Simulate	Com
N	ew			
0	pen		F3	- 1
Ir	nsert la	yout		
G	onvert	Into		•
Sé	ave lay	out	F2	
S	ave As			
Se	elect Fo	oundry	Ctrl+F	
G	olors		100	•
Pt	ropertie	s		
Pt	rint Lay	out		
Le	eave Mi	croWir	nd2 Ctrl+(5

Z menu "File" wybierz "Select Foundry". Otrzymasz na ekranie typowe okno wyboru plików. Otwórz plik "cmos08.rul".

Otwieranie	2 🛛
Szukaj w: 📔) Microwind2 💽 🔶 🖻 📸 🛛
Html cmos06.rul cmos08.rul cmos012.ru cmos012.rul cmos018.ru	國 cmos025.rul 國 mfa.rul 國 cmos035.rul 國 soi012.rul 國 cmos50n.rul ul 國 cmos70n.rul 國 cmos90n.rul ul 國 default.rul
Nazwa pliku:	cmos08 Otwórz
Pliki typu:	Rule File (*.RUL)
	🔲 Otwórz tylko do odczytu

Dla wygody rysowania zmień skalę w oknie wybierając z paska narzędzi ikonę powiększenia.

Zapoznaj się z najważniejszymi regułami projektowania - wybierz "Design Rules" z menu "Help". Otrzymasz na ekranie tabelę z podstawowymi regułami projektowania. Są w niej też inne dane, na razie nieistotne.

Zaczynasz teraz rysowanie n-kanałowego tranzystora MOS. Wybierz z palety "N+ diffusion". Jest to warstwa abstrakcyjna oznaczająca obszar aktywny typu *n*. Nazwa warstwy, która jest w danej chwili wybrana, jest w palecie oznaczona kolorem czerwonym. Warstwa nazywa się "diffusion" z przyczyn historycznych – niegdyś domieszkowanie obszarów aktywnych odbywało się przy zastosowaniu dyfuzji, a nie implantacji jonów (nie pamiętasz, co to – zajrzyj do części I, punkt 4.1).

💊 Palette	×
📮 🕒 🕑 😫 🕯	
Щ≣÷••••	າເ
\$\$#ЛЛ∿<	Ð
Options 🔀	¢n
Metal 2	¢n
Metal 1	фи
Contact 🛛 🖂	0-m
Polysilicon	¢n
P+ Diffusion	ф-н
N+ Diffusion	0m
N Well	0

Narysujesz teraz prostokąt na warstwie "N+ diffusion". Wybierz ikonę rysowania prostokąta z paska narzędzi.

Ustaw kursor w pobliżu wybranego węzła siatki, naciśnij lewy klawisz myszki i ciągnij aż do otrzymania prostokąta o potrzebnych wymiarach, następnie puść klawisz.

Prostokąt o krawędziach zaznaczonych przerywaną kreską, który pokazuje prostokąt do narysowania, będziemy nazywali selektorem.

Zauważ, że nawet jeśli nie trafiasz dokładnie w węzły siatki, narysowany będzie prostokąt o wymiarach będących całkowitą wielokrotnością jednostki lambda. Staraj się narysować prostokąt o szerokości 5 lambda i długości zbliżonej do pokazanej na ilustracji. Jeśli Ci się nie uda, możesz wybrać "Undo" z menu "Edit" i zacząć jeszcze raz. Po puszczeniu klawisza myszki selektor "wypełni się" obszarem na warstwie "N+ diffusion".

Sto	re	a	diff	nt	00	(W	iith	siz	ze	19	x	5 k	am	bd	a (7.6	600) x	2.1	00	Οp	m)			
•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
																									•
														-					-			-			
																						÷			•
																						ł			
																						ł			•
			-																			ł			
																									•

Jeśli narysujesz prostokąt zbyt długi lub szeroki, możesz usunąć jego fragment. Wybierz ikonę usuwania (pistolet) z paska narzędzi.

Następnie postępuj tak jak przy rysowaniu. Gdy puścisz klawisz myszki, wnętrze selektora zostanie wymazane.

Narysujesz teraz prostokąt na warstwie "Polysilicon" (polikrzem), a potem dorysujesz do niego kontakt do warstwy "Metal 1". Wybierz ikonę rysowania prostokąta z paska narzędzi. Następnie wybierz "Polysilicon" z palety i narysuj pionowy pasek polikrzemu o szerokości 2 lambda przecinający obszar aktywny. Następnie wybierz z palety obiekt "Contact metal/poly".

Kontakt jest obiektem zdefiniowanym w pliku technologicznym, ma wymagany kształt kwadratu i zawiera wszystkie potrzebne warstwy: polikrzem, okno kontaktowe i metal 1. Ciągnąc myszką kwadrat selektora umieść kontakt tak jak na ilustracji i puść klawisz myszki.

Oto wynik tej operacji:

•	•	•	•	•	• •			•	•	•	•	•	•	•	1
							_	_	-	-	1				
								1	1						
											1				
							<u> </u>	_							
							_								
						_									
														1	
															l
•															

Projektuj dalej tranzystor.

Postępując tak, jak poprzednio, dodaj kontakty do obszaru aktywnego (czyli źródła i drenu tranzystora) oraz pasek metalu 1 do kontaktu bramki. Pasek polikrzemu możesz skrócić. Wystarczy, że wystaje o 2 lambda poza obszar kanału tranzystora. Następnie wybierz z paska narzędzi ikonę kontroli reguł projektowania. Jeśli wykonany projekt topografii wygląda tak, jak poniżej, otrzymasz komunikat o braku błędów.

Twój tranzystor jest w zasadzie gotowy, ale trzeba jeszcze coś dodać. W układach CMOS podłoże musi być dokładnie uziemione (dlaczego? - to było opisane w części I). Aby móc uziemić podłoże, trzeba wykonać do niego kontakt. Podłoże jest półprzewodnikiem typu *p*, należy użyć kontaktu między metalem, a obszarem typu *p*. Wybierz z palety obiekt "Contact P+diff/Metal1" i postępując tak, jak przy umieszczaniu poprzednich kontaktów, umieść kontakt tak, by sąsiadował z obszarem źródła tranzystora.

Obiekt "Kontakt" zawiera wszystkie potrzebne warstwy, w tym warstwę metalu 1. Umieszczenie go tak, by sąsiadował z obszarem źródła tranzystora, oznacza że w gotowym układzie źródło będzie elektrycznie połączone z kontaktem, a ponieważ kontakt będzie uziemiony, tj. połączony z "minusem" zasilania, to uziemione będzie też źródło tranzystora. Oczywiście nie zawsze tak musi być, w układzie zawierającym wiele tranzystorów nMOS tylko niektóre będą miały źródła połączone z minusem zasilania. Ale w każdym układzie musi być przynajmniej jeden uziemiony kontakt do podłoża; w każdym większym układzie takich kontaktów musi być wiele.

Jeśli wszystko zostało wykonane poprawnie, twój tranzystor wraz z kontaktem do podłoża powinien wyglądać jak powyżej. Wykonaj jeszcze raz kontrolę reguł projektowania. Powinien ukazać się kontakt o braku błędów.

Teraz zobacz, co się stanie, jeśli w projekcie będzie błąd. Dorysuj pasek metalu 1 w odległości 1 lambda od innego obszaru metalu 1, a następnie wybierz z paska narzędzi ikonę kontroli reguł projektowania. Poniżej widzisz wynik: komunikat o błędzie.

						Ĩ																
	Ł	1.1																				
	L																					
				\sim	1																	
				İΔ		- 1																
	Ł	1.1																				
-																						
			<u>. Se</u>		w.																	
	1																					
		0	0.00	бр О.40	Ûμ																	
					÷																	
		The	en	acino	ho	kŵc	ion	. m	iot	ál.	ie I	io e		the	'n	÷.	òn	nh	do	10	έn	11
		. 1116	; sh	acını	, ne	WVIE			ret		э	63	э	trie		Э.	R.	пυ	ua	-(I	υU	1)

Przed dalszymi czynnościami usuń dorysowany pasek tak, aby pozostał prawidłowy projekt.

Jeśli wszystko jest w porządku, zapisz swój pierwszy projekt na dysku. Może się jeszcze przydać!

Wybierz "Save As" z menu "File" i zapisz projekt pod nową nazwą, np. "moj_tranzystor".

Zapisany uprzednio plik (z rozszerzeniem ".msk") zawiera opis Twojego projektu w wewnętrznym formacie programu "Microwind". Teraz możesz jeszcze zapisać projekt w standardowym formacie języka CIF i zobaczyć, jak taki zapis wygląda.

File View	Edit	Simulate	Con	npile	Ana	lysis	Help
New		E2		P.	Θ,	all	14
Insert lay	/out	гэ					
Convert	Into		•	C	i∈ lay	out f	ile .
Save lay	out	F2		SF	PICE	netlis	t
Save As					• •	\bigtriangledown	111
Select Fo	undry	Ctrl+F					111
Colors						* *	e e e
Propertie	s						
Print Lay	out				1		
Leave Mi	croWin	id2 Ctrl+C	ξ				

Wybierz "Convert Into…" -> "CIF layout file" z menu "File". Otrzymasz na ekranie tablicę, w której nie musisz zmieniać niczego poza dopisaniem nazwy zaprojektowanej komórki (*topcell*). Tablica pokazuje jakie maski zostaną zapisane w pliku w formacie CIF. Podczas zapisu dokonywana będzie konwersja z warstw abstrakcyjnych połączona w przypadku niektórych masek ze zmianami wymiarów. Są to nieistotne dla nas w tym momencie szczegóły technologiczne.

SciF Interface				
CifOut	Layer List			
	CifOut	Boxes	Overetc	
Parameters Top Cell name tr Scale (nm) : 1	DS 1 1 1; 9 tranzystor; I CONT; 9 00,12700 8900,12700 8900,13700 7900,1 P 7900,12700 1700,12700 1700,13700 700,137 P 3100,12700 4100,12700 4100,13700 3100,1 P 7900,12700 8900,12700 8900,13700 7900,1 I POLY1; P 5600,10400 6400,10400 6400,17200 5600,1 P 5600,15600 8000,15600 8000,18000 5600,1 I MET1; P 0,12000 2400,12000 2400,14400 0,14400; P 2400,12000 4800,12000 4800,14400 2400,1 P 7200,12000 9600,12000 9600,14400 7200,1 V Image: Top Cell name tranzystor Scale (nm): 1.0 Value: No message	1 6 5 2 4 4 	0.8000 0.8000 0.100000000	······································

Wpisz nazwę komórki (np. "tranzystor") w polu "Top Cell name" i kliknij "To CIF".

Projektowanie zakończone! Możesz teraz jeszcze obejrzeć zawartość przykładowego pliku CIF (Twój może w szczegółach wyglądać nieco inaczej).

Teraz pora na samodzielny trening. Narysuj topografię tranzystora MOS p-kanałowego analogiczną do narysowanej w ćwiczeniu 1 topografii tranzystora MOS n-kanałowego. Zachowaj te same wymiary kanału tranzystora. Różnice będą następujące:

- Tranzystor p-kanałowy musi być na wyspie typu n ("N Well").
- Zamiast obszaru aktywnego typu *n* należy użyć obszaru aktywnego typu *p* ("P+ diffusion").
- Wyspa oprócz tranzystora musi zawierać kontakt, który w gotowym układzie będzie podłączony do "plusa" zasilania. Wyspa jest obszarem typu *n*, więc użyj obiektu "Contact N+diff/metal1".

Nie zapomnij po zakończeniu rysowania sprawdzić, czy spełnione są reguły projektowania!

Zapisz Twój pierwszy samodzielny projekt na dysk. Może się dalej przydać!

W tym miejscu kończy się druga część materiałów opowiadających o układach scalonych. Czy zaprojektowanie tranzystorów nMOS i pMOS było trudne? Chyba nie! W następnych częściach będzie mowa o całych układach!