[Chollet, 2022] Chollet, F. (2022). Deep Learning with Python, Second Edition. Manning.
[Geron, 2019] Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, Inc., 2nd edition.
[James et al., 2023] James, G., Witten, D., Hastie, T., Tibshirani, R., and Taylor, J. (2023). An Introduction to Statistical Learning with Applications in Python. Springer Texts in Statistics. Springer, Cham. [ | DOI | http ]
[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.
[Qian, 1999] Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1):145 -- 151. [ | DOI | http ]
[Hinton et al., 2012] Hinton, G., Srivastava, N., and Swersky, K. Overview of mini-batch gradient descent. Neural Networks for Machine Learning, http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR, abs/1412.6980. [ | arXiv | http ]
[Hoerl and Kennard, 1970] Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55--67.
[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267--288. [ | http ]
[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929--1958. [ | .html ]
[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. [ | arXiv ]
[Ba et al., 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. [ | arXiv ]
[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE, pages 2278--2324.
[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25, pages 1097--1105. Curran Associates, Inc. [ | .pdf ]
[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. [ | arXiv ]
[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. [ | arXiv ]
[Szegedy et al., 2014] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). Going deeper with convolutions. [ | arXiv ]
[Gu and Dao, 2023] Gu, A. and Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752.
[Broomhead and Lowe, 1988] Broomhead, D. and Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Syst., 2.
[Vaswani et al., 2023] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2023). Attention is all you need. [ | arXiv ]
[Chechliński et al., 2019] Chechliński, L., Siemiątkowska, B., and Majewski, M. (2019). A system for weeds and crops identification—reaching over 10 fps on raspberry pi with the usage of mobilenets, densenet and custom modifications. Sensors, 19(17):3787.
[Koguciuk et al., 2019] Koguciuk, D., Chechliński, L., and El-Gaaly, T. (2019). 3d object recognition with ensemble learning---a study of point cloud-based deep learning models. In Bebis, G., Boyle, R., Parvin, B., Koracin, D., Ushizima, D., Chai, S., Sueda, S., Lin, X., Lu, A., Thalmann, D., Wang, C., and Xu, P., editors, Advances in Visual Computing, pages 100--114, Cham. Springer International Publishing.
[Gromada et al., 2022] Gromada, K., Siemiątkowska, B., Stecz, W., Płochocki, K., and Woźniak, K. (2022). Real-time object detection and classification by uav equipped with sar. Sensors, 22(5). [ | DOI | http ]
[Rostek et al., 2015] Rostek, K., Łukasz Morytko, and Jankowska, A. (2015). Early detection and prediction of leaks in fluidized-bed boilers using artificial neural networks. Energy, 89:914--923. [ | DOI | http ]
[Sztyber-Betley et al., 2023] Sztyber-Betley, A., Syfert, M., Kościelny, J. M., and Górecka, Z. (2023). Controller cyber-attack detection and isolation. Sensors, 23(5). [ | DOI | http ]
[Kuliński and Sztyber-Betley, 2024] Kuliński, W. and Sztyber-Betley, A. (2024). Day ahead electricity price forecasting with neural networks - one or multiple outputs?
[Kocon et al., 2024] Kocon, M., Malesa, M., and Rapcewicz, J. (2024). Ultra-lightweight fast anomaly detectors for industrial applications. Sensors, 24(1). [ | DOI | http ]
Ostatnia modyfikacja: piątek, 20 czerwca 2025, 12:27