Podręcznik
4. Składowe symetryczne w układach trójfazowych
4.2. Własności składowych symetrycznych
Składowe symetryczne napięć, prądów i impedancji zdefiniowane wzorami (4.7) – (4.10) mają interesujące własności charakteryzujące niesymetrię wielkości trójfazowych. Podstawowe własności można sformułować następująco.
- W układzie symetrycznym zgodnym napięć (prądów) składowa zerowa i przeciwna znikają, a składowa zgodna jest równa napięciu (prądowi) fazy podstawowej. Dowód powyższej własności przedstawiony został w przykładzie 4.1.
- W układzie symetrycznym przeciwnym napięć (prądów) składowa zerowa i zgodna znikają, a składowa przeciwna jest równa napięciu (prądowi) fazy podstawowej. Dowód powyższej własności przy prostej zamianie kolejności zgodnej na przeciwną w napięciach oryginalnych wynika z rozważań zawartych w przykładzie 4.1.
- Wystąpienie w rozkładzie na składowe symetryczne napięć lub prądów o kierunku wirowania zgodnym składowej zerowej i przeciwnej świadczy o niesymetrii układu badanych napięć lub prądów.
- W układzie symetrycznym zerowym impedancji (wszystkie trzy impedancje równe sobie) składowa zgodna i przeciwna znikają, a składowa zerowa jest równa impedancji zadanej. Dowód powyższej własności przedstawiony został w przykładzie 4.2
- W układzie trójfazowym trójprzewodowym składowa zerowa prądów liniowych jest równa zeru. Wynika to z faktu, że suma prądów liniowych w obwodzie trójprzewodowym jest z definicji równa zeru (prąd przewodu zerowego wobec jego braku musi być równy zeru), to znaczy .
- W układzie trójfazowym czteroprzewodowym prąd w przewodzie zerowym jest równy potrójnej wartości składowej zerowej, . Własność ta wynika bezpośrednio z prawa prądowego Kirchhofa, zgodnie z którym .
- Składowa symetryczna zerowa układu napięć międzyfazowych jest równa zeru. Dowód powyższej własności wynika z faktu, że suma napięć międzyfazowych niezależnie od symetrii jest z definicji równa zeru (układ napięć międzyfazowych tworzy trójkąt zamknięty), to znaczy .
- Składowa zgodna i przeciwna napięć międzyfazowych w przypadku zerowania się jednego z napięć mają takie same moduły, równe napięciu fazowemu układu trójfazowego.
Dowód tej własności wynika bezpośrednio z definicji rozkładu. Zauważmy, że przy braku jednego napięcia międzyfazowego dwa pozostałe są sobie równe i przeciwnie skierowane. Jeśli przyjmiemy, że UBC=0 oraz UAB=Emf, UCA=-Emf, gdzie Emf oznacza napięcie międzyprzewodowe to ze wzorów na składowe symetryczne otrzymuje się
Jak z powyższego widać obie składowe rozkładu (zgodna i przeciwna) są równe co do modułu wartości napięcia fazowego Ef i symetrycznie przesunięte względem fazy zerowej o kąt
Rys. 4.3. Konstrukcja graficzna składowych zgodnej i przeciwnej układu napięć międzyprzewodowych przy braku jednego z napięć
- W maszynach elektrycznych składowa zgodna prądów wywołuje pole wirujące zgodnie z kierunkiem prędkości obrotowej maszyny a układ przeciwny prądów - pole wirujące przeciwne do tej prędkości. Duża niesymetria w układzie trójfazowym objawiająca się przewagą składowej przeciwnej może więc spowodować zmianę kierunku wirowania maszyny.
- Składowa przeciwna występująca w maszynie elektrycznej wirującej w kierunku zgodnym indukuje w maszynie prądy o podwójnej częstotliwości. Stąd wywiera ona niekorzystny wpływ na pracę maszyny (zwiększony efekt grzania maszyny).