Podręcznik
3. Metoda operatorowa Laplace’a
3.3. Liniowość przekształcenia
Jeśli współczynniki a1 i a2 są dowolnymi stałymi to
(3.4) |
(3.5) |
gdzie symbole i oznaczają odpowiednio transformaty: prostą i odwrotną Laplace’a. Z własności liniowości przekształcenia wynika, że przekształcenie Laplace’a spełnia zasadę superpozycji.
Dla zilustrowania użyteczności twierdzenia o liniowości przekształcenia Laplace’a zastosujemy je do obliczenia transformaty funkcji cos(ωt). Korzystając z definicji funkcji cosinusoidalnej otrzymuje się
Skorzystamy tutaj z wyprowadzonego wcześniej wzoru na transformatę funkcji wykładniczej. Podstawiając do odpowiedniego wzoru i stosując zasadę superpozycji otrzymuje się
Skorzystamy tutaj z wyprowadzonego wcześniej wzoru na transformatę funkcji wykładniczej. Podstawiając do odpowiedniego wzoru i stosując zasadę superpozycji otrzymuje się