Podręcznik
3. Metoda operatorowa Laplace’a
3.9. Przykłady transformat Laplace’a
Obliczanie transformat Laplace’a polega na zastosowaniu wzoru (3.1) przy zadanej funkcji oryginału i przeprowadzeniu działań w nim określonych (całkowanie funkcji i wyznaczenie wartości na granicach całkowania). Przykłady wyznaczania transformaty Laplace’a dla funkcji impulsowej Diraca, wartości stałej, funkcji wykładniczej i cosinusoidalnej zostały zaprezentowane na początku tej lekcji.
Obliczanie transformat dla większości funkcji, zwłaszcza bardziej złożonych, nie jest procesem łatwym i dlatego w praktyce inżynierskiej najczęściej posługujemy się tablicami gotowych transformat Laplace’a, których źródło znaleźć można w wielu poradnikach matematycznych jak również podręcznikach poświęconych rachunkowi operatorowemu. W tablicy 3.1 zestawiono wybrane przykłady transformat Laplace’a szczególnie często wykorzystywanych przy rozwiązywaniu stanów nieustalonych w obwodach RLC. W dalszej części tej lekcji będą one wykorzystane do wyznaczania transformat odwrotnych Laplace’a (funkcji czasu odpowiadających transformatom).
Tablica 3.1 Tablica wybranych transformat Laplace’a
f(t) | F(s) |
1 | |
1(t) | |
t | |
Zawartość tablicy przedstawiająca zbiór funkcji czasu wraz z odpowiadającymi im transformatami może służyć zarówno wyznaczaniu transformaty Laplace’a przy zadanej funkcji czasu jak i działaniu odwrotnemu, to jest wyznaczeniu oryginału na podstawie zadanej postaci transformaty. Przykładowo, jeśli transformata dana jest wzorem
to odpowiadająca mu funkcja oryginału odczytana z tablicy 3.1 ma postać
W dalszej części rozważań podamy rozwinięcie tej metody pozwalające na wyznaczenie transformaty odwrotnej dla dowolnej postaci funkcji wymiernej F(s) korzystając z tablicy 3.1.